47.5k views
4 votes
Let z= -5 sqrt 3/2 + 5/2i and w=1 + sqrt 3i

a. Convert z and w to polar form.

b. Calculate zw using De Moivre’s Theorem.

c. Calculate (z / w) using De Moivre’s Theorem.

User Emin Mesic
by
8.3k points

1 Answer

3 votes

a.


z=-\frac{5\sqrt3}2+\frac52i=5\left(-\frac{\sqrt3}2+\frac12i\right)=5e^(i5\pi/6)


w=1+\sqrt3\,i=2\left(\frac12+\frac{\sqrt3}2i\right)=2e^(i\pi/3)

b. Not exactly sure how DeMoivre's theorem is relevant, since it has to do with taking powers of complex numbers... At any rate, multiplying
z and
w is as simple as multiplying the moduli and adding the arguments:


zw=5\cdot2e^(i(5\pi/6+\pi/3))=10e^(i7\pi/6)

c. Similar to (b), except now you divide the moduli and subtract the arguments:


\frac zw=\frac52e^(i(5\pi/6-\pi/3))=\frac52e^(i\pi/2)

User Internet Friend
by
7.7k points