Answer:
The area of the hexagon is
![1,014√(3)\ ft^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3gpvfou54vang648tj366356p4fyolppw7.png)
Explanation:
we know that
The area of a regular hexagon is equal to
![A=(1)/(2)Pa](https://img.qammunity.org/2020/formulas/mathematics/high-school/ugl366jjsman88mt1i39prxtoasuhe7yhb.png)
where
P is the perimeter
a is the apothem
Find the length side of the hexagon
Let
b-----> the length side of the hexagon
Remember that
The formula to calculate the length side given the apothem is equal to
![b=(2a)/(√(3))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gj4zekde0e2sj2pndxkigpy52anhivv8sf.png)
we have
![a=13√(3)\ ft](https://img.qammunity.org/2020/formulas/mathematics/middle-school/scv1ilrhp555525m3z0p238kti403tklfr.png)
substitute
![b=(2(13√(3)))/(√(3))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ocz2h91ch9rwxeyvd5g9l3u3cx4cdlsadh.png)
![b=26\ ft](https://img.qammunity.org/2020/formulas/mathematics/middle-school/bg7mpwfmtqzihp8fin88tnsfs0hv3eq17o.png)
Find the perimeter P
![P=6b=6(26)=156\ ft](https://img.qammunity.org/2020/formulas/mathematics/middle-school/m1lvkp7i15a9jrsd5tpkniojotvox5fhp8.png)
Find the area of the hexagon
![A=(1)/(2)(156)(13√(3))=1,014√(3)\ ft^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/c8b2jpc0kjfwzhi5es12yobod4in8oeanl.png)