Answer:
T₂(°C) = 200 K = - 73°C.
Step-by-step explanation:
- We can use the general law of ideal gas: PV = nRT.
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
- If n is constant, and have different values of P, V and T:
(P₁V₁T₂) = (P₂V₂T₁)
P₁ = 5.0 atm, V₁ = 5.0 L, T₁ = -23°C + 273 = 250 K,
P₂ = 2.0 atm, V₂ = 10.0 L, T₂ = ??? K,
- Applying in the above equation
(P₁V₁T₂) = (P₂V₂T₁)
∴ T₂ = (P₂V₂T₁)/(P₁V₁) = (2.0 atm)(10.0 L)(250 K)/(5.0 atm)(5.0 L) = 200 K.
∴ T₂(°C) = 200 K - 273 = - 73°C.