Answer:
( 3 )The simplified product has a degree of 2.
Explanation:
![(b-2c)(-3b+c)](https://img.qammunity.org/2020/formulas/mathematics/high-school/6dhl4ufedw50ioqjqq39f3qwc1pxie3cvz.png)
Multiply the parenthesis using FOIL method
multiply b inside the second parenthesis
![b(-3b+c)= -3b^2 +bc](https://img.qammunity.org/2020/formulas/mathematics/high-school/jtzwbrowuqw67v0tvpdxak651zrlvk07nm.png)
![-2c(-3b+c)= 6bc -2c^2](https://img.qammunity.org/2020/formulas/mathematics/high-school/sz308c0oaik24s3bt1j0g5z05v1opeppa0.png)
![(-3b^2 +bc+6bc -2c^2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/hnitd3u4rr5x04jfbv7g2l3ss3nh6rjeux.png)
Combine like terms
![-3b^2 +7bc -2c^2](https://img.qammunity.org/2020/formulas/mathematics/high-school/gnpzoucbx0db4buyznzhzcgf0h102duo17.png)
Simplified product has 3 terms, and the degree of 2 because we have b^2
and c^2