Answer:
Option B is correct
Explanation:
Given:
f(x) = -20x^2 +14x +12 and
g(x) = 5x - 6
We need to find f/g and state its domain.
f/g = -20x^2 +14x +12/5x - 6
Taking -2 common from numerator:
f/g = -2(10x^2 - 7x - 6) / 5x -6
Factorize 10x^2 - 7x - 6= 10x^2 - 12x +5x -6
Putting in the above equation
f/g = -2(10x^2 - 12x +5x -6)/ 5x -6
f/g = -2(2x(5x-6) + 1 (5x-6)) / 5x-6
f/g = -2 ( (2x+1)(5x-6))/5x-6
cancelling 5x-6 from numerator and denominator
f/g = -2(2x+1)
f/g = -4x -2
The domain of the function is set of all values for which the function is defined and real.
So, our function g(x) = 5x -6 and domain will be all real numbers except x = 6/5 as denominator will be zero if x=5/6 and the function will be undefined.
So, Option B is correct.