182k views
3 votes
What is the expression equivalent to? Screenshots attached. Please help, ASAP! Important.

What is the expression equivalent to? Screenshots attached. Please help, ASAP! Important-example-1

1 Answer

3 votes

Answer:

Choice C is the correct solution

Explanation:

We can split up the terms under the cube root sign to obtain;


\sqrt[3]{32}*\sqrt[3]{x^(8) }*\sqrt[3]{y^(10) }\\\\\sqrt[3]{32}=\sqrt[3]{8*4}=\sqrt[3]{8}*\sqrt[3]{4}=2\sqrt[3]{4}\\\\\sqrt[3]{x^(8) }=\sqrt[3]{x^(6)*x^(2)}=\sqrt[3]{x^(6) }*\sqrt[3]{x^(2) }=x^(2)*\sqrt[3]{x^(2) }\\\\\sqrt[3]{y^(10) }=\sqrt[3]{y^(9)*y }=\sqrt[3]{y^(9) }*\sqrt[3]{y}=y^(3)*\sqrt[3]{y}

The final step is to combine these terms;


2\sqrt[3]{4}*x^(2)*\sqrt[3]{x^(2) }*y^(3)*\sqrt[3]{y}\\\\2x^(2)y^(3)\sqrt[3]{4x^(2)y }

User Thordax
by
7.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories