Hello!
The answer is:
![(3xy-1)(4xy+2)=12(xy)^(2)+2xy-2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2n5ndxr1mejbnpbu80egskf67o710o4r1k.png)
or
![(3xy-1)(4xy+2)=12x^(2)y^(2)+2xy-2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7y7wmxhj1kc7iq6uanvqc4iacnf2wqww95.png)
Why?
To solve the problem and identify the resultant expression, we need to apply the distributive property, and the, add or subtract like terms.
Describing the distributive property:
![(a+b)(c+d)=a*c+a*d+b*c+b*d](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2o8rlb0rbwodr9bhe6ezxcgydcbludhcbt.png)
Remember, like terms are the terms that share the same variable and same exponent, for example:
![a^(2) +3a^(2)+a^(3)=4a^(2)+a^(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/oi5oehx0cc9wbajhaed02hwu69hqyogktq.png)
We were able to add only the terms that have the same exponent (2).
We are given the expression:
![(3xy-1)(4xy+2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/61vo4x203az9l59dmwu2l26jqogw3ytis8.png)
Now, solving we have:
![(3xy-1)(4xy+2)=(3xy*4xy)+(3xy*2)-(1*4xy)-2\\\\(3xy*4xy)+(3xy*2)-(1*4xy)-2=12(xy)^(2)+6xy-4xy-2\\\\12(xy)^(2)+6xy-4xy-2=12(xy)^(2)+2xy-2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/cjeqdu5urd142kcmzsmn8hzukrynhltkqo.png)
Hence, we have that:
![(3xy-1)(4xy+2)=12(xy)^(2)+2xy-2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2n5ndxr1mejbnpbu80egskf67o710o4r1k.png)
or
![(3xy-1)(4xy+2)=12x^(2)y^(2)+2xy-2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7y7wmxhj1kc7iq6uanvqc4iacnf2wqww95.png)
Have a nice day!