137k views
3 votes
Solving for matrices

Solving for matrices-example-1
User Darcbar
by
8.9k points

2 Answers

0 votes

The correct answer is option d: (1, 5, 2).

To solve the system of equations using the augmented matrix and row operations, we can set up the augmented matrix for the system:


\left[\begin{array}{ccc}3&-4&5\\5&2&-2\\5&-4&4\end{array}\right] \left[\begin{array}{ccc}-27\\11\\-7\end{array}\right]

​Now, let's perform row operations to get the reduced row-echelon form (RREF):


R_2 =R_2 - (5)/(3) R_1\\R_3 =R_3- (5)/(3) R_1


R_3 =R_3 +R_2\\R_1 =R_1 -R_2\\R_1 =R_1 +R_3\\R_2​ =R_2 +R_3

After performing these row operations, the augmented matrix becomes:


\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right] \left[\begin{array}{ccc}10\\5\\2\end{array}\right]

Now, we can read off the solution directly from the RREF matrix:

x=10

y=5

z=2

​So, the correct answer is option d: (1, 5, 2).

User Avacariu
by
8.4k points
4 votes

Answer:

D

Explanation:

The augmented matrix for the system of three equaitons is


\left(\begin{array}{ccccc} 3&-4&-5&|&-27\\5&2&-2&|&11\\5&-4&4&|&-7\end{array}\right)

Multiply the first row by 5, the second row by -3 and add these two rows:


\left(\begin{array}{ccccc} 3&-4&-5&|&-27\\0&-26&-19&|&-168\\5&-4&4&|&-7\end{array}\right)

Subtract the third row from the second:


\left(\begin{array}{ccccc} 3&-4&-5&|&-27\\0&-26&-19&|&-168\\0&6&-6&|&18\end{array}\right)

Divide the third row by 6:


\left(\begin{array}{ccccc} 3&-4&-5&|&-27\\0&-26&-19&|&-168\\0&1&-1&|&3\end{array}\right)

Now multiply the third equation by 26 and add it to the second row:


\left(\begin{array}{ccccc} 3&-4&-5&|&-27\\0&-26&-19&|&-168\\0&0&-45&|&-90\end{array}\right)

You get the system of three equations:


\left\{\begin{array}{r}3x-4y-5z=-27\\-26y-19z=-168\\-45z=-90\end{array}\right.

From the third equation


z=(90)/(45)=2.

Substitute z=2 into the second equation:


-26y-19\cdot 2=-168\\ \\-26y-38=-168\\ \\-26y=-168+38=-130\\ \\y=(130)/(26)=5.

Now substitute z=2 and y=5 into the first equation:


3x-4\cdot 5-5\cdot 2=-27\\ \\3x-20-10=-27\\ \\3x-30=-27\\ \\3x=-27+30=3\\ \\x=1.

The solution is (1,5,2)

User Alexloehr
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories