216k views
1 vote
Using 4 equal-width intervals, show that the trapezoidal rule is the average of the upper and lower sum estimates for the integral from 0 to 2 of x squared, dx .

User RohitAneja
by
4.8k points

1 Answer

5 votes

Split up the interval [0, 2] into 4 subintervals, so that


[0,2]=\left[0,\frac12\right]\cup\left[\frac12,1\right]\cup\left[1,\frac32\right]\cup\left[\frac32,2\right]

Each subinterval has width
\frac{2-0}4=\frac12. The area of the trapezoid constructed on each subinterval is
\frac{f(x_i)+f(x_(i+1))}4, i.e. the average of the values of
x^2 at both endpoints of the subinterval times 1/2 over each subinterval
[x_i,x_(i+1)].

So,


\displaystyle\int_0^2x^2\,\mathrm dx\approx\frac{0^2+\left(\frac12\right)^2}4+\frac{\left(\frac12\right)^2+1^2}4+\frac{1^2+\left(\frac32\right)^2}4+\frac{\left(\frac32\right)^2+2^2}4


=\displaystyle\sum_(i=1)^4\frac{\left(\frac{i-1}2\right)^2+\left(\frac i2\right)^2}4=\frac{11}4

User PerduGames
by
5.4k points