I'm sure there's an easier way to do this, but this method does work:
First, AB = CD = CG + GF + FD, so FG = 2.
By the Pythagorean theorem, in triangle AFD we get
![1^2+3^2=A F^2\implies A F=√(10)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2rb4s6xhxyd5fbwnjgmhg623frfjz3jsj4.png)
and in triangle BCG,
![2^2+3^2=BG^2\implies BG=√(13)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gvocqu91yq5af9e2o2qprfz3yyt71lnb51.png)
Angles AFD and EFG form a vertical pair, so they are congruent and have measure
![m\angle EFG=\tan^(-1)3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4m863vbvgtg34jfivx7kquk5y09n1rmenu.png)
Similarly, angles BGC and FGE are congruent and have measure
![m\angle FGE=\tan^(-1)\frac32](https://img.qammunity.org/2020/formulas/mathematics/middle-school/juewfn2bzqfgu6yrk5pcm0cj1h6g46edk7.png)
Then the remaining angle in triangle EFG has measure
![m\angle FEG=\pi-\tan^(-1)3-\tan^(-1)\frac32](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qsjwo9596wqbsiqma6u96902k8gfc5mfzi.png)
We can solve for the lengths of FE and GE exactly by applying the law of sines:
![\frac{\sin\left(\pi-\tan^(-1)3-\tan^(-1)\frac 32\right)}2=(\sin\left(\tan^(-1)3\right))/(GE)=(\sin\left(\tan^(-1)\frac32\right))/(FE)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/91e15x1vqjv63ff49jrjylpmkk2ionh0k3.png)
![\implies GE=\frac{2√(13)}3,FE=\frac{2√(10)}3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/f79ko40jg3mufa7bpp8vy224ug9u4ips78.png)
Let
be the semiperimeter of triangle ABE, so that
![s=\frac{AB+BE+EA}2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/swz3b117o4p22owd44lxgdul4r89kw4lds.png)
Then according to Heron's formula, the area of triangle ABE is
![√(s(s-AB)(s-BE)(s-EA))=\frac{25}2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8nkgq5w8nhk1vyk04wequke3ql4nyfxe62.png)