144,066 views
14 votes
14 votes
Please guys please pllease

Please guys please pllease-example-1
User Maxwilms
by
2.6k points

2 Answers

13 votes
13 votes

Answer:

x= -3.936 and -0.064

Explanation:

I simplified the equation to 40u^2 +16u + 1. Then I just graphed it and found that the zeroes were -3.936 and -0.064.

User Martin Magakian
by
2.8k points
16 votes
16 votes


{ \qquad\qquad\huge\underline{{\sf Answer}}}

Here we go ~

Let's calculate its discriminant :


\qquad \sf  \dashrightarrow \: 4 {u}^(2) + 16u + 41 = 40


\qquad \sf  \dashrightarrow \: 4 {u}^(2) + 16u + 41 - 40 = 0


\qquad \sf  \dashrightarrow \: 4 {u}^(2) + 16u + 1 = 0

Here, if we equate it with general equation,

  • a = 4

  • b = 16

  • c = 1


\qquad \sf  \dashrightarrow \: disciminant = {b}^(2) - 4ac


\qquad \sf  \dashrightarrow \: d = (16) {}^(2) - (4 * 4 * 1)


\qquad \sf  \dashrightarrow \: d = (16) {}^(2) - (16)


\qquad \sf  \dashrightarrow \: d = 16(16 - 1)


\qquad \sf  \dashrightarrow \: d = 16(15)


\qquad \sf  \dashrightarrow \: d = 240

Now, since discriminant is positive ; it has two real roots ~

The roots are :


\qquad \sf  \dashrightarrow \: u = ( - b \pm √( d ) )/(2a)


\qquad \sf  \dashrightarrow \: u = ( - 16\pm √( 240 ) )/(2 * 4)


\qquad \sf  \dashrightarrow \: u = ( - 16\pm 4√( 15 ) )/(8)


\qquad \sf  \dashrightarrow \: u = ( 4(- 4\pm √( 15 )) )/(8)


\qquad \sf  \dashrightarrow \: u = ( - 4\pm √( 15 ) )/(2)

So, the required roots are :


\qquad \sf  \dashrightarrow \: u = ( - 4 - √( 15 ) )/(2) \: \: and \: \: ( - 4 + √(15) )/(2)

User Jewettg
by
3.0k points