18.5k views
1 vote
Solve the given initial-value problem. the de is of the form dy dx = f(ax + by + c), which is given in (5) of section 2.5. dy dx = cos(x + y), y(0) = π 2

User Fey
by
5.2k points

1 Answer

4 votes


(\mathrm dy)/(\mathrm dx)=\cos(x+y)

Let
v=x+y, so that
(\mathrm dv)/(\mathrm dx)-1=(\mathrm dy)/(\mathrm dx):


(\mathrm dv)/(\mathrm dx)=\cos v+1

Now the ODE is separable, and we have


(\mathrm dv)/(1+\cos v)=\mathrm dx

Integrating both sides gives


\displaystyle\int(\mathrm dv)/(1+\cos v)=\int\mathrm dx

For the integral on the left, rewrite the integrand as


\frac1{1+\cos v}\cdot(1-\cos v)/(1-\cos v)=(1-\cos v)/(1-\cos^2v)=\csc^2v-\csc v\cot v

Then


\displaystyle\int(\mathrm dv)/(1+\cos v)=-\cot v+\csc v+C

and so


\csc v-\cot v=x+C


\csc(x+y)-\cot(x+y)=x+C

Given that
y(0)=\frac\pi2, we find


\csc\left(0+\frac\pi2\right)-\cot\left(0+\frac\pi2\right)=0+C\implies C=1

so that the particular solution to this IVP is


\csc(x+y)-\cot(x+y)=x+1

User Kaleem Shoukat
by
5.6k points