Answer:
0.004 m
Step-by-step explanation:
For light passing through a single slit, the position of the nth-minimum in the diffraction pattern is given by

where
is the wavelength
D is the distance of the screen from the slit
d is the width of the slit
Therefore, the width of the central maximum is equal to twice the value of y for n=1 (first minimum):

where we have
is the wavelength
D = 2.0 m is the distance of the screen
is the width of the slit
Substituting, we find
