Answer:
Angle 3 and angle 4 are linear pair
Explanation:
* Lets revise the types of angles
- If two line intersected at a point, there are two types of
pairs of angles
- Two vertically opposite angles equal in measure
- Linear pair of angles their sum is 180°
* Now lets solve the problem
- There are two lines intersect each other at a point
- They formed between them 4 angles
- Angle 2 and angle 4 are vertical opposite angles, equal in measure
- Angle 1 and angle 3 are vertical opposite angles, equal in measure
∴ m∠2 = m∠4
∴ m∠1 = m∠3
- Angle 1 and angle 2 formed a line
∴ They are linear pair of angles
- Angle 3 and angle 4 formed a line
∴ They are linear pair, of angles
∵ m∠1 + m∠2 = 180°
∴ m∠3 + m∠4 = 180°
* Angle 3 and angle 4 are linear pair