ANSWER
A. 15 units^2
Step-by-step explanation
The area of kite is half the product of the diagonals.
The first diagonal has vertices at,
T(0,0) and R(5,5).
The length of this diagonal is
![TR = \sqrt{ {5}^(2) + {5}^(2) }](https://img.qammunity.org/2020/formulas/mathematics/high-school/6uafna5300275qc64essn6dligtaulra1w.png)
![TR = √(25 + 25)](https://img.qammunity.org/2020/formulas/mathematics/high-school/yzgjhvpr2wz85wtsdceo1c9vujbhzwr58a.png)
![TR = √(50) =5 √(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/dl0h0pirzbsrdveafgkniws774y83dysm3.png)
The other diagonal has vertices at;
Q(0,3) and S(3,0).
The length of this diagonal is
![QS = \sqrt{ {3}^(2) + {3}^(2) }](https://img.qammunity.org/2020/formulas/mathematics/high-school/e217xcyxbcsv37ldllku3qrc3jqu9qbqj3.png)
![QS = √( 9+ 9 )](https://img.qammunity.org/2020/formulas/mathematics/high-school/o88k7i1b4ilgojcr6yjwntvbl7y5ch1nno.png)
![QS = √(18) = 3 √(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/mi67baes6805p8l0jrtn9ylb1qfbvdqd3l.png)
The area of the kite is
![= (1)/(2) * 3 √(2) * 5 √(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/rowzy8tcojdjusvjlo6vpq956fueezri9f.png)
![= 15 \: {units}^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/l23kok89pxdertketi25ekw6ecp3e64fi6.png)