To compute the limit
notice that when x = 0, both the numerator and denominator converge to 0. Apply l'Hopital's rule once gives
but again, this returns the indeterminate form 0/0. Applying again gives
so that the numerator converges to e⁰ + sin(0) = 1, and the denominator converges to 12•0² + 42•0 + 16 = 16.
So the limit is 1/16.