Answer:
The x-intercepts are (4,0) and (-9,0)
Explanation:
We want to find the x-intercepts of the function:
![f(x)=x^2+5x-36](https://img.qammunity.org/2020/formulas/mathematics/middle-school/f9oq0ln5b9cvp2m17z5l6zmyg8o1m2zdcs.png)
At x-intercept,
![f(x)=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rur55zla9ujowurgyoxeoex2g38c6hzs1g.png)
![\implies x^2+5x-36=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8c8est584lnae0itcom13xfzzn223pk0et.png)
We split the middle term to obtain;
![x^2+9x-4x-36=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1knx7zgrspu0ajd4tvmx6hz01ny9oknqyr.png)
Factor by grouping:
![x(x+9)-4(x+9)=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zfwapj2l9uinf4xq1gkdq817kh476sqkqr.png)
![(x-4)(x+9)=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ump97t8s07zxp5cx3j77k9fye99bmzorut.png)
Apply the zero product principle.
![(x-4)=0,(x+9)=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zc30psazpke7l8a8wz0if14taecqhsv2rj.png)
![x=4,x=-9](https://img.qammunity.org/2020/formulas/mathematics/middle-school/hz3f8paqrknl0z6ontu2bqwu72smbrroa1.png)
Hence the x-intercepts are (4,0) and (-9,0)