1.
![1.69\cdot 10^(11) m](https://img.qammunity.org/2020/formulas/physics/college/85zy2cz2i7e9qqwabrhuca6s4bhfxywpmd.png)
The Schwarzschild radius of an object of mass M is given by:
(1)
where
G is the gravitational constant
M is the mass of the object
c is the speed of light
The black hole in the problem has a mass of
![M=5.7\cdot 10^7 M_s](https://img.qammunity.org/2020/formulas/physics/college/x8j8m345u700xrrlno64fgv31hy4sqhbur.png)
where
is the solar mass. Substituting,
![M=(5.7\cdot 10^7)(2\cdot 10^(30)kg)=1.14\cdot 10^(38) kg](https://img.qammunity.org/2020/formulas/physics/college/wkp9aubtzp6et36ascp0svufqeta7o60rq.png)
and substituting into eq.(1), we find the Schwarzschild radius of this black hole:
![r_s = (2(6.67\cdot 10^(-11))(1.14\cdot 10^(38) kg))/((3\cdot 10^8 m/s)^2)=1.69\cdot 10^(11) m](https://img.qammunity.org/2020/formulas/physics/college/e5teyr0647v7z8oepovwjbnqmzjg37qhed.png)
2) 242.8 solar radii
We are asked to find the radius of the black hole in units of the solar radius.
The solar radius is
![r_S = 6.96\cdot 10^5 km = 6.96\cdot 10^8 m](https://img.qammunity.org/2020/formulas/physics/college/v550ndcq3a8r5n74oeo08zn4tirtbbitfo.png)
Therefore, the Schwarzschild radius of the black hole in solar radius units is
![r=(1.69\cdot 10^(11) m)/(6.96\cdot 10^8 m)=242.8](https://img.qammunity.org/2020/formulas/physics/college/l4rc67d9f7owo04tpct9p9p5acpxkitpz1.png)