Odd numbers take the form
, where
is an integer. When
, the last odd number would be 799. So we're adding
![S=1+3+5+\cdots+795+797+799](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gmthoiemgzh747usgoz9q45hpubpca2hnq.png)
By reversing the order of terms, we have
![S=799+797+795+\cdots+5+3+1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xzdde75wnria3vv42pdejgr5t43250gc03.png)
and we can pair up terms in both sums at the same position to write
![2S=(1+799)+(3+797)+(5+795)+\cdots(795+5)+(797+3)+(799+1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/25hgp7lsx94f67rla3ywu6pgmx2u1xdxez.png)
so that we are basically adding 400 copies of 800, and from there we can find the value of the sum right away:
![2S=400\cdot800\implies S=160,000](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4aw56c2bhuffy33nu3c1rldc3qzjvcchbr.png)
###
We could also make use of the formulas,
![\displaystyle\sum_(i=1)^n1=n](https://img.qammunity.org/2020/formulas/mathematics/middle-school/d5je8jt5dxevi7acrw79cip2hr8g3hq6vl.png)
![\displaystyle\sum_(i=1)^ni=\frac{n(n+1)}2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/expsx35cr4ov3dkzi3dfim7trw27qx53qv.png)
We have
![S=\displaystyle\sum_(i=1)^(400)(2i-1)=2\sum_(i=1)^(400)i-\sum_(i=1)^(400)1=400(400+1)-400=400^2=160,000](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gso5dwkdxcky9npq32030hqp139qv7x492.png)