Answer:
2130 m³, 3.11 °C, 1.25×10⁷ J
Step-by-step explanation:
No heat is exchanged, so this is an adiabatic process. For an ideal gas, this means:
PV^((f+2)/f) = constant,
where P is pressure, V is volume, and f is degrees of freedom.
For a monatomic gas, f=3. For a diatomic gas, f=5. Since helium is monatomic, f=3.
Therefore:
PV^(5/3) = PV^(5/3)
(1.00 atm) (2.00×10³ m³)^(5/3) = (0.900 atm) V^(5/3)
V = 2130 m³
For an ideal gas in an adiabatic process, we can also say:
VT^(f/2) = constant
Therefore:
(2.00×10³ m³) (15.0 + 273.15 K)^(3/2) = (2130 m³) T^(3/2)
T = 276.26 K
T = 3.11 °C
Finally, the change in internal energy is:
ΔU = (f/2) nRΔT
We need to find the number of moles, n, using ideal gas law:
PV = nRT
n = PV/(RT)
n = (1.00 atm) (2.00×10³ m³) / ((8.21×10⁻⁵ atm m³ / mol / K) (15.0 + 273.15 K))
n = 84,500 mol
So the change in internal energy is:
ΔU = (3/2) (84,500 mol) (8.314 J/mol/K) (15.0 - 3.11) K
ΔU = 1.25×10⁷ J