(a)
![2.7\cdot 10^(25) kg](https://img.qammunity.org/2020/formulas/physics/college/xhyivx7e1abnlgme3geslw824c59ayu0b6.png)
The acceleration due to gravity on the surface of the planet is given by
(1)
where
G is the gravitational constant
M is the mass of the planet
R is the radius of the planet
Here we know:
![g=22.4 m/s^2](https://img.qammunity.org/2020/formulas/physics/college/cehav9sn8lxgifa1y9584xdgarry96jj0x.png)
is the diameter, so the radius is
![R=(d)/(2)=(1.8\cdot 10^7 m)/(2)=9\cdot 10^6 m](https://img.qammunity.org/2020/formulas/physics/college/96ubim68abuynhcz4khd2d10izvj7vdnht.png)
So we can re-arrange eq.(1) to find M, the mass of the planet:
![M=(gR^2)/(G)=((22.4 m/s^2)(9\cdot 10^6 m)^2)/(6.67\cdot 10^(-11))=2.7\cdot 10^(25) kg](https://img.qammunity.org/2020/formulas/physics/college/5m2d62cq82aa2hjtqv47ge3a2kjp6be76t.png)
(b)
![4.8\cdot 10^(31)kg](https://img.qammunity.org/2020/formulas/physics/college/jh3mwmoyhi8wv96j4lfd92500kjnnbd05b.png)
The planet is orbiting the star, so the centripetal force is equal to the gravitational attraction between the planet and the star:
(1)
where
m is the mass of the planet
M is the mass of the star
v is the orbital speed of the planet
r is the radius of the orbit
The orbital speed is equal to the ratio between the circumference of the orbit and the period, T:
![v=(2\pi r)/(T)](https://img.qammunity.org/2020/formulas/physics/high-school/2za54pioixdjpg1tdg4pulis7z6k7tk42j.png)
where
![T=402 days = 3.47\cdot 10^7 s](https://img.qammunity.org/2020/formulas/physics/college/lk2x4r3wmmpxycpyssnh65409fywd9xy7s.png)
Substituting into (1) and re-arranging the equation
![m(4\pi r^2)/(rT^2)=(GMm)/(r^2)\\(4\pi r)/(T^2)=(GM)/(r^2)\\M=(4\pi r^3)/(GMT^2)](https://img.qammunity.org/2020/formulas/physics/college/tjbp7m8rm7h5kderi5bdsqjuof5u90ig3g.png)
And substituting the numbers, we find the mass of the star:
![M=(4\pi^2 (4.6\cdot 10^(11) m)^3)/((6.67\cdot 10^(-11))(3.47\cdot 10^7 s)^2)=4.8\cdot 10^(31)kg](https://img.qammunity.org/2020/formulas/physics/college/5t02i6rptc5zptr7u9cuj7lllgmafl6jfx.png)