(a)
![2.68\cdot 10^(-6) W/m^2](https://img.qammunity.org/2020/formulas/physics/college/ngg69non5xt8i5eku2ie8e98nrl9p0g8yo.png)
The intensity of an electromagnetic wave is given by
![I=(P)/(A)](https://img.qammunity.org/2020/formulas/physics/middle-school/gxragx4zm67sxw7t9hxtsk6kp11hp8bhhj.png)
where
P is the power
A is the area of the surface considered
For the waves in the problem,
is the power
The area is a hemisphere of radius
![r=104 km=1.04\cdot 10^5 m](https://img.qammunity.org/2020/formulas/physics/college/9cszz4rw5kcn4d80sz2mlhfa7cnmh1joet.png)
so
![A=2\pi r^2=2\pi (1.04\cdot 10^5 m)^2=6.8\cdot 10^(10) m^2](https://img.qammunity.org/2020/formulas/physics/college/m0t4prabraip2t4df1ljs6oikxpitiqas4.png)
So, the intensity is
![I=(1.82\cdot 10^5 W)/(6.8\cdot 10^(10)m^2)=2.68\cdot 10^(-6) W/m^2](https://img.qammunity.org/2020/formulas/physics/college/tphbqtwxe1o6osnsv8f5oavs0rdjfytjdx.png)
(b)
![5.9\cdot 10^(-7) W](https://img.qammunity.org/2020/formulas/physics/college/6caqz23qmvgc1owbikk205athopa8hmyk7.png)
In this case, the area of the reflection is
![A=0.22 m^2](https://img.qammunity.org/2020/formulas/physics/college/fomdz4hnghp42vy0d2vz0forv9eik45l61.png)
So, if we use the intensity of the wave that we found previously, we can calculate the power of the aircraft's reflection using the same formula:
![P=IA=(2.68\cdot 10^(-6) W/m^2)(0.22 m^2)=5.9\cdot 10^(-7) W](https://img.qammunity.org/2020/formulas/physics/college/zw4u44r4xdd1ckldbsyyoqa4u2zu3136nw.png)
(c)
![8.7\cdot 10^(-18) W/m^2](https://img.qammunity.org/2020/formulas/physics/college/kfkuletiy2yad6m7iebhgju9ks08bbnxyx.png)
We said that the power of the waves reflected by the aircraft is
![P=5.9\cdot 10^(-7) W](https://img.qammunity.org/2020/formulas/physics/college/4m62f0kdtvg9b3dfszxpq1socmolgr6384.png)
If we assume that the reflected waves also propagate over a hemisphere of radius
![r=104 km=1.04\cdot 10^5 m](https://img.qammunity.org/2020/formulas/physics/college/9cszz4rw5kcn4d80sz2mlhfa7cnmh1joet.png)
which has an area of
![A=2\pi r^2=2\pi (1.04\cdot 10^5 m)^2=6.8\cdot 10^(10) m^2](https://img.qammunity.org/2020/formulas/physics/college/m0t4prabraip2t4df1ljs6oikxpitiqas4.png)
Then the intensity of the reflected waves at the radar site will be
![I=(P)/(A)=(5.9\cdot 10^(-7) W)/(6.8\cdot 10^(10) m^2)=8.7\cdot 10^(-18) W/m^2](https://img.qammunity.org/2020/formulas/physics/college/4jcv47nwd15cj14eajeijte544jtpn90i5.png)
(d)
![8.1\cdot 10^(-8) V/m](https://img.qammunity.org/2020/formulas/physics/college/7oyp2amlyd5lnyag2rcndiprkakc5ue0tw.png)
The intensity of a wave is related to the maximum value of the electric field by
![I=(1)/(2)c\epsilon_0 E_0^2](https://img.qammunity.org/2020/formulas/physics/college/aj7qdl82u7y6o65toldod0i7bg9ul7fycz.png)
where
c is the speed of light
is the vacuum permittivity
is the maximum value of the electric field vector
Solving the equation for
,
![E_0=\sqrt{(2I)/(c\epsilon_0)}=\sqrt{(2(8.7\cdot 10^(-18) W/m^2))/((3\cdot 10^8 m/s)(8.85\cdot 10^(-12) F/m))}=8.1\cdot 10^(-8) V/m](https://img.qammunity.org/2020/formulas/physics/college/rr0aqki804l40f7gn8lpo9sx4bj55h683j.png)
(e)
![1.9\cdot 10^(-16) T](https://img.qammunity.org/2020/formulas/physics/college/nser1m2cvecb1diqbfy597gznyaqurqq9i.png)
The maximum value of the magnetic field vector is given by
![B_0 = (E_0)/(c)](https://img.qammunity.org/2020/formulas/physics/college/keedau8ue1vlat5yjdqvpkl2uajfa5rknw.png)
Substituting the values,
![B_0 = ((8.1\cdot 10^(-8) V/m))/(3\cdot 10^8 m/s)=2.7\cdot 10^(-16) T](https://img.qammunity.org/2020/formulas/physics/college/p3rfieaxq284g130f44lroh4zebvxtvsoq.png)
And the rms value of the magnetic field is given by
![B_(rms) = (B_0)/(√(2))=(2.7\cdot 10^(-16) T)/(√(2))=1.9\cdot 10^(-16) T](https://img.qammunity.org/2020/formulas/physics/college/nr7b45nllqr5w67eef1j0u4sekdwaurzvg.png)