137,079 views
14 votes
14 votes
Evaluate the line integral

6 integral yzcosx ds x = t, y = cost, z = sint 0 < t < pi

User WIZARDELF
by
2.9k points

1 Answer

13 votes
13 votes

It looks like the integral is


\displaystyle 6 \int yz\cos(x) \, ds

With
x=t,
y=\cos(t), and
z=\sin(t), the line element is


ds = \sqrt{\left((dx)/(dt)\right)^2 + \left((dy)/(dt)\right)^2 + \left((dz)/(dt)\right)^2} \, dt = \sqrt2 \, dt

and so


\displaystyle 6 \int yz\cos(x) \, ds = 6\sqrt2 \int_0^\pi \cos^2(t) \sin(t) \, dt

Substitute
u = \cos(t) and
du=-\sin(t)\,dt, then


\displaystyle 6 \int yz\cos(x) \, ds = -6\sqrt2 \int_1^(-1) u^2 \, du = 12\sqrt2 \int_0^1 u^2 \, du = \boxed{4\sqrt2}

where in the second-to-last equality, we have


\displaystyle -\int_1^(-1) = \int_(-1)^1

and


\displaystyle \int_(-1)^1 u^2 \, du = 2 \int_0^1 u^2\,du

by symmetry.

User Tue Nguyen
by
3.3k points