Answer:
![M^(2)=3.2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1ww8c3nuzvwraz1l44c0klsgzw3rzj8ofz.png)
Explanation:
we know that
A relationship between two variables, x, and y, represent an inverse variation if it can be expressed in the form
or
![y=k/x](https://img.qammunity.org/2020/formulas/mathematics/high-school/o50e4iz2cbwjhxop7sc5xcxdwiguxpycgd.png)
In this problem we have
![P*M^(2)=k](https://img.qammunity.org/2020/formulas/mathematics/middle-school/a4qysr620ezn3yc9s19fmfmk2ne3jcae1v.png)
step 1
Find the value of k
For P=8, M=2
substitute
![k=(8)(2)^(2)=32](https://img.qammunity.org/2020/formulas/mathematics/middle-school/agdhjwkbf0orlq98zvl1523p0abp1c3i53.png)
The equation is equal to
![P*M^(2)=32](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4pemef6eb9zbp4t08osixj4gjs5354b2xi.png)
step 2
Find the value of M²
when P=10
substitute the value of P in the equation
![10*M^(2)=32](https://img.qammunity.org/2020/formulas/mathematics/middle-school/t310hd502uagnq44wpx5uirvz28q8xpos9.png)
![M^(2)=3.2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1ww8c3nuzvwraz1l44c0klsgzw3rzj8ofz.png)