178k views
5 votes
How do I solve this​

How do I solve this​-example-1

2 Answers

5 votes

19945.8 to simplify, the answer is

User Kwishnu
by
7.4k points
3 votes


\bf \qquad \qquad \textit{sum of a finite geometric sequence} \\\\ S_n=\displaystyle\sum \limits_(i=1)^(n)\ a_1\cdot r^(i-1)\implies S_n=a_1\left( \cfrac{1-r^n}{1-r} \right)\quad \begin{cases} n=n^(th)\ term\\ a_1=\textit{first term's value}\\ r=\textit{common ratio} \end{cases} \\\\[-0.35em] ~\dotfill


\bf S_(20)=\displaystyle\sum \limits_(n=1)^{\stackrel{\stackrel{n}{\downarrow }}{20}}~\stackrel{\stackrel{a_1}{\downarrow }}{3}(\stackrel{\stackrel{r}{\downarrow }}{1.5})^(n-1)\implies S_(20)=3\left(\cfrac{1-1.5^(20)}{1-1.5} \right)\implies S_(20)=3\left(\cfrac{1-\stackrel{\approx}{3325.3}}{-0.5} \right) \\\\\\ S_(20)=3\left(\cfrac{-3324.3}{-0.5} \right)\implies S_(20)=3(6648.6)\implies S_(20)=19945.8

User Palanik
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories