ANSWER
(1,0) is a solution
Step-by-step explanation
The given inequality is
![y \leqslant |x + 2|- 3](https://img.qammunity.org/2020/formulas/mathematics/high-school/traaplz8e2ykrnbpa4tm48mlr79a0onpcv.png)
We substitute the point to see which ones satisfy the inequality.
For (1,0)
![0\leqslant|1+ 2|- 3](https://img.qammunity.org/2020/formulas/mathematics/high-school/ox0ss99spbmicmd71y6ubxfoa1fxevizws.png)
![0\leqslant 0](https://img.qammunity.org/2020/formulas/mathematics/high-school/f676svath5vpty0dmy5atp3p4jdmjgerbq.png)
This is true.
(1,0) is a solution.
For (-1-1)
![- 1\leqslant | - 1 + 2|-3](https://img.qammunity.org/2020/formulas/mathematics/high-school/d98kvh7xyr7htpd0dr72cgi0lbsmr22ddw.png)
![- 1\leqslant-2](https://img.qammunity.org/2020/formulas/mathematics/high-school/enalxm246w26978jhye9g8duvtmanozoye.png)
False
(-1,-1) is not a solution.
For (0,0)
![0\leqslant|0+2|-3](https://img.qammunity.org/2020/formulas/mathematics/high-school/ubh8tqp0d9zyo1ha6x4qcsmfqj5zw95okp.png)
![0\leqslant- 1](https://img.qammunity.org/2020/formulas/mathematics/high-school/1vcc1rc1bkknhc303ggfzvv7felfxrvo66.png)
False.
For (0,1)
![1\leqslant|0+ 2|-3](https://img.qammunity.org/2020/formulas/mathematics/high-school/19eikrytj6ny7wi02l8iz2fud72iw5ytkb.png)
![1\leqslant-1](https://img.qammunity.org/2020/formulas/mathematics/high-school/gnoah649qg7dybpsnrya2yfnvaaryv17we.png)
This is also false