41.1k views
1 vote
If the determinant of this matrix is -19, what is the value of a?

A.
3
B.
4
C.
5
D.
6

If the determinant of this matrix is -19, what is the value of a? A. 3 B. 4 C. 5 D-example-1

2 Answers

2 votes

Answer:

a = 5

Explanation:

We are given 3 x 3 matrix and the determinant of the matrix is -19.

We need find the value of "a" in the given matrix.


\left[\begin{array}{ccc}-6&7&1\\a&-3&4\\-6&4&-3\end{array}\right]

determinant (D) = -6[(-3)(-3) − (4)(4)] − 7[a(-3) − (4)(-6)] + 1[a(4) − (-3)(-6)]

-19 = -6[9 - 16] -7[-3a +24] +1[4a - 18]

-19 = -6[-7] +21a - 168 + 4a - 18

-19 = 42 + 21a -168 + 4a - 18

Simplify the like terms, we get

-19 = 25a - 144

25a = -144 + 19

25a = 125

Dividing both sides by 25, we get

a =
(125)/(25)

a = 5

So the value of a is 5.

User ALLSYED
by
7.9k points
3 votes

Answer:

C)5

Explanation:

For a 3x3 matrix
\left[\begin{array}{ccc}a&b&c\\d&e&f\\g&h&i\end{array}\right]

determinent is given by = = a(ei − fh) − b(di − fg) + c(dh − eg)

Given Matrix


\left[\begin{array}{ccc}-6&7&1\\a&-3&4\\-6&4&-3\end{array}\right]

determinent of matrix= -6((-3)(-3) − (4)(4)) − 7(a(-3) − (4)(-6)) + 1(a(4) − (-3)(-6))

-19= -6(9-16) - 7(-3a+24) +4a-18

125= 25a

125/25= 25a/25

a= 5 !

User Eric Zhou
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories