93.6k views
5 votes
What are the roots of x in -10x2 + 12x − 9 = 0?

2 Answers

2 votes

Answer:

x = 3[2 + i√-6]/10 or x = 3[2 - i√-6]/10

Explanation:

Formula

Solution of a quadratic equation ax² + bx + c = 0

x = [-b ± √(b² - 4ac)]/2a

To find the solution

It is given that,

-10x² + 12x - 9 = 0

here a = -10, b = 12 and c = -9

x = [-b ± √(b² - 4ac)]/2a

= [-12 ± √(12² - 4* -10 * -9)]/2 * -10

= [-12 ± √(144 - 360)]/-20

=[12 ± √-216]/20

= [12 ± i6√-6]/20

= [6 ± i3√-6]/10

= 3[2 ± i√-6]/10

x = 3[2 + i√-6]/10 or x = 3[2 - i√-6]/10

User RajVimalC
by
5.8k points
6 votes

Answer:


x_1=(3(2+i√(6)))/(10)


x_2=(3(2-i√(6)))/(10)

Explanation:

Use the Quadratic formula:


x=(-b\±√(b^2-4ac))/(2a)

You can identify that, in this case:


a=-10\\b=12\\c=-9

Now you need to substitute these values into the formula:


x=(-12\±√(12^2-4(-10)(-9)))/(2(-10))


x=(-12\±√(-216))/(-20)

Remember that:


i=√(-1)

Therefore,rewriting and simplifying, you get:


x=(-12\±6i√(6))/(-20)


x=(-6(2\±i√(6)))/(-2(10))


x=(3(2\±i√(6)))/(10)

Then, you get the following roots:


x_1=(3(2+i√(6)))/(10)


x_2=(3(2-i√(6)))/(10)

User Priyshrm
by
5.4k points