318,881 views
28 votes
28 votes
Given y =
(2x-5)/(x^(2) -2), find the value of
(dy)/(dx) at x = 2.

User Shab
by
2.6k points

1 Answer

25 votes
25 votes

Given:


\bold{(2x-5)/(x^(2) -2)}


\bold{(dy)/(dx)}


\huge\mathbb{ \underline{SOLUTION :}}

»
\tt{For \: \: y,}


\longrightarrow\sf{y=v \frac{2x - 5}{ {x}^(2) - 2} }


\longrightarrow\sf{(dy)/(dx) = \cfrac{ ( {x}^(2) - 2)(2) - (2x - 5)(2x)}{( {x}^(2) - {2}^(2) )}}


\longrightarrow\sf{\cfrac{2 {x}^(2) - 4 - {4x}^(2) + 10x}{ ({x}^(2) - {2}^(2) )}}


\longrightarrow{={ \boxed{\sf \cfrac{ - 2 {x}^(2) - 4 + 10x}{ ({x}^(2) - {2}^(2) )}}}}

»
\tt{At \: \: x = 2,}


\longrightarrow\sf{ \frac{ - 2(2) {}^(2) + 10(2) - 4 }{( {2}^(2) - 2 {)}^(2) } }


\longrightarrow\sf{( - 8 + 20 - 4)/(4) }


\longrightarrow\sf{ (8)/(4) }


\longrightarrow{\sf = \boxed{\sf {2}}}


\huge \mathbb{ \underline{ANSWER:}}

The value of the given differential function at
\sf{x=2} is
\sf{2.}

User Dvkch
by
2.9k points