12. Recall the half-angle identity,
![\sin^2\frac y2=\frac{1-\cos y}2\implies\sin\frac y2=\sqrt{\frac{1-\cos y}2}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zxvlj0on2hdy65kwbd5savfjo98h4f6nts.png)
where we take the positive square root because
is an angle in a right triangle, which means
, so
. For such an angle, it's always the case that
.
Use the Pythagorean theorem to find the length of the hypotenuse:
![√(5^2+12^2)=√(169)=13](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7r1hbqm2ird9q5aieinfkuabrtrbp5okqf.png)
Then
![\sin\frac y2=\sqrt{\frac{1-\frac5{13}}2}=\sqrt{\frac4{13}}=\frac2{√(13)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/19fhh2upklp4z9ystdm7h6c9zoi2k1xht1.png)
###
13.
is in quadrant II, which means
, so
. In other words,
is in quadrant I, so
. From the half-angle identity we get
![\sin\frac x2=\sqrt{\frac{1-\cos x}2}=√(\frac23)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/u38as1242xa8195eooi2la8xn3mehoge5i.png)
###
14. Simplification follows from the definitions of each function:
![\sec x=\frac1{\cos x}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/znwu54yre9ekobtbt2iz1fxhkcwal53i8z.png)
![\tan x=(\sin x)/(\cos x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/63z1wrje2iceeu1akufc9cyeq8g5vt2jep.png)
![\csc x=\frac1{\sin x}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gcsw7cg4646qy8bpka3ae5xcswgowoh1jc.png)
So we have
![\sec x\tan x\cos x\csc x=(\sin x\cos x)/(\cos^2x\sin x)=\frac1{\cos x}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zi0gx55134d4c9eow9q1rkmrt5hbukngkw.png)
###
15. Use the Pythagorean identity:
![\cos^2x+\sin^2x=1\implies(\cos^2x)/(\cos^2x)+(\sin^2x)/(\cos^2x)=\frac1{\cos^2x}\implies1+\tan^2x=\sec^2x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1wr13gex33u48rt3jar0l1nonfbw73ygx6.png)
Then
![\tan^3x+\tan x=\tan x(\tan^2x+1)=\tan x\sec^2x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ksnr61eowdy55buxaxsyiz1vcc5htd29vz.png)