207k views
5 votes
Precalc - trig identities. Decent explanation, please. THX!!!

Precalc - trig identities. Decent explanation, please. THX!!!-example-1
Precalc - trig identities. Decent explanation, please. THX!!!-example-1
Precalc - trig identities. Decent explanation, please. THX!!!-example-2
Precalc - trig identities. Decent explanation, please. THX!!!-example-3
Precalc - trig identities. Decent explanation, please. THX!!!-example-4

1 Answer

4 votes

12. Recall the half-angle identity,


\sin^2\frac y2=\frac{1-\cos y}2\implies\sin\frac y2=\sqrt{\frac{1-\cos y}2}

where we take the positive square root because
y is an angle in a right triangle, which means
0^\circ<y<90^\circ, so
0^\circ<\frac y2<45^\circ. For such an angle, it's always the case that
\sin\frac y2>0.

Use the Pythagorean theorem to find the length of the hypotenuse:


√(5^2+12^2)=√(169)=13

Then


\sin\frac y2=\sqrt{\frac{1-\frac5{13}}2}=\sqrt{\frac4{13}}=\frac2{√(13)}

###

13.
x is in quadrant II, which means
90^\circ<x<180^\circ, so
45^\circ<\frac x2<90^\circ. In other words,
\frac x2 is in quadrant I, so
\sin\frac x2>0. From the half-angle identity we get


\sin\frac x2=\sqrt{\frac{1-\cos x}2}=√(\frac23)

###

14. Simplification follows from the definitions of each function:


\sec x=\frac1{\cos x}


\tan x=(\sin x)/(\cos x)


\csc x=\frac1{\sin x}

So we have


\sec x\tan x\cos x\csc x=(\sin x\cos x)/(\cos^2x\sin x)=\frac1{\cos x}

###

15. Use the Pythagorean identity:


\cos^2x+\sin^2x=1\implies(\cos^2x)/(\cos^2x)+(\sin^2x)/(\cos^2x)=\frac1{\cos^2x}\implies1+\tan^2x=\sec^2x

Then


\tan^3x+\tan x=\tan x(\tan^2x+1)=\tan x\sec^2x

User Nistvan
by
5.5k points