(a) 120.8 m/s^2
The gravitational acceleration at a generic distance r from the centre of the planet is
![g=(GM')/(r^2)](https://img.qammunity.org/2020/formulas/physics/college/d38q4hva0mnrem9xbndkj4u1mzadlfg5gx.png)
where
G is the gravitational constant
M' is the mass enclosed by the spherical surface of radius r
r is the distance from the centre
For this part of the problem,
![r=R=1.17\cdot 10^6 m](https://img.qammunity.org/2020/formulas/physics/college/j2qmr0xdswza9s1hf2dkakhkwup60d3f3u.png)
so the mass enclosed is just the mass of the core:
![M'=M=2.48\cdot 10^(24)kg](https://img.qammunity.org/2020/formulas/physics/college/vpnpcpmvsgbs5vmoqco6j03ji775htgjyh.png)
So the gravitational acceleration is
![g=((6.67\cdot 10^(-11))(2.48\cdot 10^(24)kg))/((1.17\cdot 10^6 m)^2)=120.8 m/s^2](https://img.qammunity.org/2020/formulas/physics/college/mzqfjw16p0nk1sj1cff6daj5ipusquxwuk.png)
(b) 67.1 m/s^2
In this part of the problem,
![r=3R=3(1.17\cdot 10^6 m)=3.51\cdot 10^6 m](https://img.qammunity.org/2020/formulas/physics/college/mdty2285frzzecn4686qg9439i3vi3ey37.png)
and the mass enclosed here is the sum of the mass of the core and the mass of the shell, so
![M'=M+4M=5M=5(2.48\cdot 10^(24)kg)=1.24\cdot 10^(25)kg](https://img.qammunity.org/2020/formulas/physics/college/fuci8s845ajdzz6dje5i9qmn1xyefqck50.png)
so the gravitational acceleration is
![g=((6.67\cdot 10^(-11))(1.24\cdot 10^(25)kg))/((3.51\cdot 10^6 m)^2)=67.1 m/s^2](https://img.qammunity.org/2020/formulas/physics/college/logdnpbytbs18jflgnrss0ar8f5l06enlb.png)