111k views
1 vote
Solve the system and write your answer as a coordinate point. I

(1 Point)
-6x – 3y = 24
4x – 2y = 8

1 Answer

9 votes

Answer:

The solution of the system is:

(x, y) = (-1, -6)

Explanation:

Given the system of equations

-6x – 3y = 24

4x – 2y = 8

solving the system of equations


\begin{bmatrix}-6x-3y=24\\ 4x-2y=8\end{bmatrix}


\mathrm{Multiply\:}-6x-3y=24\mathrm{\:by\:}2\:\mathrm{:}\:\quad \:-12x-6y=48


\mathrm{Multiply\:}4x-2y=8\mathrm{\:by\:}3\:\mathrm{:}\:\quad \:12x-6y=24

so


\begin{bmatrix}-12x-6y=48\\ 12x-6y=24\end{bmatrix}

adding the equations


12x-6y=24


+


\underline{-12x-6y=48}


-12y=72

so the system of equations becomes


\begin{bmatrix}-12x-6y=48\\ -12y=72\end{bmatrix}

solve -5y=72 for y


-12y=72

Divide both sides by -12


(-12y)/(-12)=(72)/(-12)

Simplify


y=-6


\mathrm{For\:}-12x-6y=48\mathrm{\:plug\:in\:}y=-6

solving


-12x-6\left(-6\right)=48


-12x+6\cdot \:6=48


-12x+36=48

subtract 36 from both sides


-12x+36-36=48-36

Simplify


-12x=12

Divide both sides by -12


(-12x)/(-12)=(12)/(-12)


x=-1

Therefore, the solution of the system is:

(x, y) = (-1, -6)

User Timothyjgraham
by
3.2k points