Answer:
B. 9.76 u²
Explanation:
First calculate the area of the 60° wedge of the circle by calculating the area of the full circle and multiplying it by a fraction of 60°/360°:
![A_(ABC)=(60)/(360)*\pi *r^(2)\\A_(ABC)=(60)/(360)*\pi *(6√(3))^(2)\\A_(ABC)=56.54](https://img.qammunity.org/2020/formulas/mathematics/high-school/eez9a20ajv55axqyc5ovxxbh4674dmv12f.png)
Now calculate the the area of the white triangle in the wedge, by using a base length of
, and height:
![h=\sqrt{(6√(3))^(2)-(3√(3))^(2)} \\h=9](https://img.qammunity.org/2020/formulas/mathematics/high-school/3sphv6w781i8i0tfjw39pe37sab0epbjxy.png)
![A_(TRI)=(1)/(2)*9*6√(3) \\A_(TRI)=27√(3) \\A_(TRI)=46.78](https://img.qammunity.org/2020/formulas/mathematics/high-school/sm5mj9ji9v5wv9zbdza3vyek51pl31le2j.png)
Find the area of the red segment:
![A_(ABC) -A_(TRI)\\=56.54-46.78\\=9.76](https://img.qammunity.org/2020/formulas/mathematics/high-school/60ully2cgrla5qkxgyakvrvj3m5rkxulxz.png)