Answer:
Final answer in simplified form is
![9x^2-4x+5](https://img.qammunity.org/2020/formulas/mathematics/high-school/fuohio9wf47od2zigg3ok2cpzgn0zcsyb7.png)
Explanation:
Given expression is
![(x+2)-(-9x^2+5x-3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/3ukcmy2uejubi26bxbldvlzvx71wrlsqsh.png)
Now we need to find an equivalent expression for
![(x+2)-(-9x^2+5x-3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/3ukcmy2uejubi26bxbldvlzvx71wrlsqsh.png)
First we can distribute the negative sign and remove the parenthesis the combine like terms
![(x+2)-(-9x^2+5x-3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/3ukcmy2uejubi26bxbldvlzvx71wrlsqsh.png)
![=x+2+9x^2-5x+3](https://img.qammunity.org/2020/formulas/mathematics/high-school/i2ieawxx8pligu20hzt8luvzoxigqf19sj.png)
![=9x^2+x-5x+2+3](https://img.qammunity.org/2020/formulas/mathematics/high-school/d1aflbf54arme1y7twxb683sdm690cgpe1.png)
![=9x^2-4x+5](https://img.qammunity.org/2020/formulas/mathematics/high-school/72n41v6m6j929m9iqbbgzb3u3vr2iobdkj.png)
Hence final answer in simplified form is
![9x^2-4x+5](https://img.qammunity.org/2020/formulas/mathematics/high-school/fuohio9wf47od2zigg3ok2cpzgn0zcsyb7.png)