Answer:
Final answer in simplified form is
![-7x^2+10x-18](https://img.qammunity.org/2020/formulas/mathematics/high-school/yygam0byhayb429g1f405e661tug8ny15d.png)
Explanation:
Given expression is
![(-7x^2+4x-3)+(6x-15)](https://img.qammunity.org/2020/formulas/mathematics/high-school/vleaqnrbalg7fy6potwxg1aiq3vz5yr64v.png)
Now we need to find an equivalent expression for
![(-7x^2+4x-3)+(6x-15)](https://img.qammunity.org/2020/formulas/mathematics/high-school/vleaqnrbalg7fy6potwxg1aiq3vz5yr64v.png)
First we can distribute the positive sign and remove the parenthesis the combine like terms
![(-7x^2+4x-3)+(6x-15)](https://img.qammunity.org/2020/formulas/mathematics/high-school/vleaqnrbalg7fy6potwxg1aiq3vz5yr64v.png)
![=-7x^2+4x-3+6x-15](https://img.qammunity.org/2020/formulas/mathematics/high-school/yfpwgd1h6cvf9eqwse94vsk91xoqa19ant.png)
![=-7x^2+4x+6x-3-15](https://img.qammunity.org/2020/formulas/mathematics/high-school/kv0kx9z2z1weyc5m6h35yxgc8uhfcagsdz.png)
![=-7x^2+10x-18](https://img.qammunity.org/2020/formulas/mathematics/high-school/uj4tu8ajhto15os836mo85y8zr22llbpns.png)
Hence final answer in simplified form is
![-7x^2+10x-18](https://img.qammunity.org/2020/formulas/mathematics/high-school/yygam0byhayb429g1f405e661tug8ny15d.png)