81.1k views
11 votes
Integral of below.

ſ√y . e^-y^3​

User Khoa Vo
by
8.2k points

1 Answer

12 votes

Assuming you're equipped with the error function,


\mathrm{erf}(x)=\displaystyle\frac2{\sqrt\pi}\int_0^x e^(-u^2)\,\mathrm du

whose derivative is


(\mathrm d)/(\mathrm dx)\mathrm{erf}(x)=\frac2{\sqrt\pi}e^(-x^2)

by substituting x = √y, so that x ² = y and 2x dx = dy, we have


\displastyle\int\sqrt y e^(-y^3)\,\mathrm dy=\int 2x^2 e^(-x^6)\,\mathrm dx

Then if u = x ³ and du = 3x ² dx, we have


\displaystyle\int\sqrt y e^(-y^3)\,\mathrm dy=\int\frac23 e^(-u^2)\,\mathrm du


\displaystyle\int\sqrt y e^(-y^3)\,\mathrm dy=\frac{\sqrt\pi}3\mathrm{erf}(u)+C


\displaystyle\int\sqrt y e^(-y^3)\,\mathrm dy=\frac{\sqrt\pi}3\mathrm{erf}(x^3)+C


\displaystyle\int\sqrt y e^(-y^3)\,\mathrm dy=\boxed{\frac{\sqrt\pi}3\mathrm{erf}\left(y^(\frac32)\right)+C}

If you're not familiar with the error function, unfortunately there is no elementary antiderivative...

User Olanrewaju
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.