81.1k views
11 votes
Integral of below.

ſ√y . e^-y^3​

User Khoa Vo
by
3.3k points

1 Answer

12 votes

Assuming you're equipped with the error function,


\mathrm{erf}(x)=\displaystyle\frac2{\sqrt\pi}\int_0^x e^(-u^2)\,\mathrm du

whose derivative is


(\mathrm d)/(\mathrm dx)\mathrm{erf}(x)=\frac2{\sqrt\pi}e^(-x^2)

by substituting x = √y, so that x ² = y and 2x dx = dy, we have


\displastyle\int\sqrt y e^(-y^3)\,\mathrm dy=\int 2x^2 e^(-x^6)\,\mathrm dx

Then if u = x ³ and du = 3x ² dx, we have


\displaystyle\int\sqrt y e^(-y^3)\,\mathrm dy=\int\frac23 e^(-u^2)\,\mathrm du


\displaystyle\int\sqrt y e^(-y^3)\,\mathrm dy=\frac{\sqrt\pi}3\mathrm{erf}(u)+C


\displaystyle\int\sqrt y e^(-y^3)\,\mathrm dy=\frac{\sqrt\pi}3\mathrm{erf}(x^3)+C


\displaystyle\int\sqrt y e^(-y^3)\,\mathrm dy=\boxed{\frac{\sqrt\pi}3\mathrm{erf}\left(y^(\frac32)\right)+C}

If you're not familiar with the error function, unfortunately there is no elementary antiderivative...

User Olanrewaju
by
3.1k points