116k views
5 votes
2, 6, 18, 54,....

Find the common ratio of the given sequence, and write an exponential function which represents the sequence. Use n = 1, 2, 3, ...
A) 3; f(n) = 2(3)n-1
B)
1
3
; f(x) = 2(3)n-1
C) 3; f(n) = 2(
1
3
)n-1
D)
1
3
; f(n) = 2(
1
3
)n-1

User Derrell
by
5.4k points

2 Answers

5 votes

Answer:

A

Explanation:

i got it correct on usatestprep

User Matt Wonlaw
by
5.4k points
3 votes

Answer:

3;
f(n)=2(3)^(n-1)

Explanation:

The given sequence is

2, 6, 18, 54,....

The first term is
f(1)=2

The common ratio is obtained expressing a subsequent term over a previous term.

The common ratio is
r=(6)/(2) =3

The the nth term of the sequence is given by:


f(n)=f(1)(r^(n-1))


f(n)=2(3)^(n-1)

The exponential function which represents the sequence is


f(n)=2(3)^(n-1)

User Tangy
by
4.2k points