Answer:
The volume of the stack is
![425.250\pi\ mm^(3)](https://img.qammunity.org/2020/formulas/mathematics/college/mga6uignp0sfvkq47tme897u9qgu37b1cm.png)
Explanation:
we know that
The volume of the cylinder (DVD stack) is equal to
![V=Bh](https://img.qammunity.org/2020/formulas/mathematics/college/1z8biyc5dxidzjd7gaahhzli35rckolci0.png)
where
B is the area of the base
h is the height of the stack
Find the area of the base B
The area of the base B is equal to the area of the larger circle minus the area of the hollow center
![B=\pi (r2^(2) -r1^(2))](https://img.qammunity.org/2020/formulas/mathematics/college/y1knqji8vyerqwf5fchn70nellrqvvmgd6.png)
we have
-----> the radius is half the diameter
-----> the radius is half the diameter
substitute
![B=\pi (60^(2) -7.5^(2))](https://img.qammunity.org/2020/formulas/mathematics/college/7lwoxujguvepupzo2vwz5tcyknrnx34p67.png)
![B=3,543.75\pi\ mm^(2))](https://img.qammunity.org/2020/formulas/mathematics/college/t41hj3sy2vw5z004rlcstj7v1w94cn71fe.png)
Find the height of the stack
![h=100*(1.2)=120\ mm](https://img.qammunity.org/2020/formulas/mathematics/college/pcezge5vnmx1mgbeew8qxzrjw8x5qlzn1t.png)
Find the volume
![V=(3,543.75\pi)(120)=425.250\pi\ mm^(3)](https://img.qammunity.org/2020/formulas/mathematics/college/5ratf7cozexl866i8ndfxkpkiui44w2rqm.png)