Answer:
The radius is
![r=5\ cm](https://img.qammunity.org/2020/formulas/mathematics/middle-school/al1jqmbassguq4qxk70oyrr5ay82bn66ai.png)
Explanation:
we know that
The inscribed angle is half that of the arc it comprises.
so
![m<C =(1/2)[arc\ AB]](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zznj4medb2t9hmw1tolgsjii3o28qum1z4.png)
![m<C =90\°](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mo67vt60fcccqn0qr1ci6z4kw1u2rll3ge.png)
substitute
![90\°=(1/2)[arc\ AB]](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4xyvfgp9jwumssouaowgffxf0flo8ebak7.png)
![arc\ AB=180\°](https://img.qammunity.org/2020/formulas/mathematics/middle-school/puqvhi16iqgk7j7jo52ldsov5q3o9cmzkb.png)
That means----> The length side AB of the inscribed triangle is a diameter of the circle
Applying Pythagoras Theorem
Calculate the length side AB
![AB^(2)=AC^(2)+BC^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wautpd2l83s50cyfaxlgtlb2aor62de898.png)
![AB^(2)=8^(2)+6^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yrp9klrbr80bl7qz7vl75kq0bs50ll9qe1.png)
![AB^(2)=100](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4t0voj2vjkxdeyzfwme46hvwqdxxsnq08j.png)
-----> is the diameter
Find the radius
-----> the radius is half the diameter