Answer:
Part 1) Sphere The surface area is equal to
and the volume is equal to
![V=(1,372)/(3)\pi\ m^(3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/rf0c3gpcj28aqoyplnrdlrl1n1jlvc9b44.png)
Part 2) Cone The surface area is equal to
and the volume is equal to
![V=(112)/(3)\pi\ units^(3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/pyp0g7omt18flp3cn2w3qizd4agpqeuqnt.png)
Part 3) Triangular Prism The surface area is equal to
and the volume is equal to
![V=17.388\ mm^(3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/pjfoe5p2tq0dlcu3zbqpelm61sjgmwx2qg.png)
Explanation:
Part 1) The figure is a sphere
a) Find the surface area
The surface area of the sphere is equal to
![SA=4\pi r^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lrtreitqwe2s2tkkhr0xyobeh0wqs4gs7k.png)
we have
----> the radius is half the diameter
substitute
![SA=4\pi (7)^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/x74y6s3rx174270t0fv7mqfvlk5fyz8lky.png)
![SA=196\pi\ m^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/qs161f1e4z0a6gf4fvu83gum52n0bqtxdz.png)
b) Find the volume
The volume of the sphere is equal to
![V=(4)/(3)\pi r^(3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/904v6t92j764tuemw89ou00p3u81fhmqpa.png)
we have
----> the radius is half the diameter
substitute
![V=(4)/(3)\pi (7)^(3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/517w0t3hcgys6fc8v5y5nd4k1rp37jp675.png)
![V=(1,372)/(3)\pi\ m^(3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/rf0c3gpcj28aqoyplnrdlrl1n1jlvc9b44.png)
Part 2) The figure is a cone
a) Find the surface area
The surface area of a cone is equal to
![SA=\pi r^(2) +\pi rl](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7ze08clxe2ej1iezbkiyidna2i81f9l8lz.png)
we have
![r=4\ units](https://img.qammunity.org/2020/formulas/mathematics/high-school/4tg0kf7xwr00c9qgbspecp4nt13l6q02ov.png)
![h=7\ units](https://img.qammunity.org/2020/formulas/mathematics/high-school/sf6p2p00a3jyc1xjgrfjsj5vo9fu51pxy0.png)
Applying Pythagoras Theorem find the value of l (slant height)
![l^(2)=r^(2) +h^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/xkj79zboy6yh4gq24fry43rokn8ix4ra9x.png)
substitute the values
![l^(2)=4^(2) +7^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/krfusnjbikk62evmv38lca9q3xtkogrw3u.png)
![l^(2)=65](https://img.qammunity.org/2020/formulas/mathematics/high-school/vytsob6awn8evn109rsoin8du9k5f3vht0.png)
![l=√(65)\ units](https://img.qammunity.org/2020/formulas/mathematics/high-school/3e6au4m1d02cx3a5dtysn2djcjyn8fm0wm.png)
so
![SA=\pi (4)^(2) +\pi (4)(√(65))](https://img.qammunity.org/2020/formulas/mathematics/high-school/jntum66863006w8sw8vmex2jmgp1ygpzin.png)
![SA=16\pi +4√(65)\pi](https://img.qammunity.org/2020/formulas/mathematics/high-school/8gjkm0hh30tei2mu5uocex7ha8mc2fhc22.png)
![SA=(16+4√(65))\pi\ units^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/2349mif17no0p5gdmt90b509uhqxwx8ih6.png)
b) Find the volume
The volume of a cone is equal to
![V=(1)/(3)\pi r^(2)h](https://img.qammunity.org/2020/formulas/mathematics/middle-school/25zf7q1ro45wq3eqm5bebwne6mqikz52qb.png)
we have
![r=4\ units](https://img.qammunity.org/2020/formulas/mathematics/high-school/4tg0kf7xwr00c9qgbspecp4nt13l6q02ov.png)
![h=7\ units](https://img.qammunity.org/2020/formulas/mathematics/high-school/sf6p2p00a3jyc1xjgrfjsj5vo9fu51pxy0.png)
substitute
![V=(1)/(3)\pi (4)^(2)(7)](https://img.qammunity.org/2020/formulas/mathematics/high-school/9xsehczftszzcjn0h8mmgynb7ejzzi6fj7.png)
![V=(112)/(3)\pi\ units^(3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/pyp0g7omt18flp3cn2w3qizd4agpqeuqnt.png)
Part 3) The figure is a triangular prism
a) The surface area of the triangular prism is equal to
![SA=2B+PL](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6gudw6m8t4qhsr0dxamk3klgaijxkrb583.png)
where
B is the area of the triangular base
P is the perimeter of the triangular base
L is the length of the prism
Find the area of the base B
![B=(1)/(2) (2.7)(2.3)=3.105\ mm^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/um0nh04rtx8wz50cdda42ah4fzwpxvjmrh.png)
Find the perimeter of the base P
![P=2.7*3=8.1\ mm](https://img.qammunity.org/2020/formulas/mathematics/high-school/vrjq2ws5wlskq2mtubosd3f4whlvh33elu.png)
we have
![L=5.6\ mm](https://img.qammunity.org/2020/formulas/mathematics/high-school/s03x53e5hvzm9ugrq257mxuzbbfx5ptlcg.png)
substitute the values
![SA=2(3.105)+(8.1)(5.6)=51.57\ mm^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/utcut8g0zk9495bsf7zl7mbc6a7vq6rqmq.png)
b) Find the volume
The volume of the triangular prism is equal to
![V=BL](https://img.qammunity.org/2020/formulas/mathematics/middle-school/t7ltvtj8z35zwqu3u25op91l5jkfyemlxr.png)
where
B is the area of the triangular base
L is the length of the prism
we have
![B=3.105\ mm^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/jw6653shyo6bphl2ma4ujj09qrluwtk221.png)
![L=5.6\ mm](https://img.qammunity.org/2020/formulas/mathematics/high-school/s03x53e5hvzm9ugrq257mxuzbbfx5ptlcg.png)
substitute
![V=(3.105)(5.6)=17.388\ mm^(3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/adawfedbuud3ngqmnomxw7t593d4ng4vne.png)