Answer: option a
Explanation:
The volume of a cylinder can be calculated with this formula:
![V=\pi r^2h](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2x6jh6ysz6ef85wkmp7armtq6fmfcdu3bh.png)
Where the radius is "r" and the height is "h"
Calculate the volume of the Cylinder A:
![V_A=\pi (1m)^2(4m)\\\\V_A=4\pi\ m^3](https://img.qammunity.org/2020/formulas/mathematics/high-school/tem2vqut6xdxmmch8jjfgj5ta47f16p2w4.png)
Calculate the volume of the Cylinder B:
![V_B=\pi (1m)^2(8m)\\\\V_B=8\pi\ m^3](https://img.qammunity.org/2020/formulas/mathematics/high-school/y6lheymlehqozn9zmdfua35y59ayhu198m.png)
Now, the ratio of the volume of the Cylinder A to the volume of the Cylinder B can be calculated with:
![ratio=(V_A)/(V_B)](https://img.qammunity.org/2020/formulas/mathematics/high-school/cw022vdptev436fwlbtqgsdqnkhxz2ag1m.png)
Substituting values, you get:
![ratio=(4\pi\ m^3)/(8\pi\ m^3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/lz65pzzjdpuc8smkmg8sgundjlvdaniogl.png)
or 1:2