(a)
![3.3\cdot 10^(-6) Pa](https://img.qammunity.org/2020/formulas/physics/college/91xvpo4iakw5raxwqqcesqz0a5d5iwpxvi.png)
The radiation pressure exerted by an electromagnetic wave on a surface that totally absorbs the radiation is given by
![p=(I)/(c)](https://img.qammunity.org/2020/formulas/physics/college/pv8mrtzic6g5au1fuzkvt9pb0fpojkqnkv.png)
where
I is the intensity of the wave
c is the speed of light
In this problem,
![I=1000 W/m^2](https://img.qammunity.org/2020/formulas/physics/college/3yjt2yrwhk51r1bffqzomcd8xjxbvsffqc.png)
and substituting
, we find the radiation pressure
![p=(1000 W/m^2)/(3\cdot 10^8 m/s)=3.3\cdot 10^(-6)Pa](https://img.qammunity.org/2020/formulas/physics/college/hetr0aq9u6szvi71gjulaqqgtu6ptds8ck.png)
(b)
![4.4\cdot 10^(-8) m/s^2](https://img.qammunity.org/2020/formulas/physics/college/x473i4w6rlpiib68cnlljk433m1n9zki2r.png)
Since we know the cross-sectional area of the laser beam:
![A=6.65\cdot 10^(-29)m^2](https://img.qammunity.org/2020/formulas/physics/college/pbrrywk47hwwtmd69lpbot8jkeu7se959s.png)
starting from the radiation pressure found at point (a), we can calculate the force exerted on a tritium atom:
![F=pa=(3.3\cdot 10^(-6)Pa)(6.65\cdot 10^(-29) m^2)=2.2\cdot 10^(-34)N](https://img.qammunity.org/2020/formulas/physics/college/8rzit9f7fcq5tk6zop11n3vn9mf7rampi3.png)
And then, since we know the mass of the atom
![m=5.01\cdot 10^(-27)kg](https://img.qammunity.org/2020/formulas/physics/college/bapzpeo7xss5njq7ry91eic5on140v75hz.png)
we can find the acceleration, by using Newton's second law:
![a=(F)/(m)=(2.2\cdot 10^(-34) N)/(5.01\cdot 10^(-27) kg)=4.4\cdot 10^(-8) m/s^2](https://img.qammunity.org/2020/formulas/physics/college/3i64jv0mgool4ovacem7lbighz3qkscki8.png)