Hello!
The answer is:
D.
![8\sqrt[3]{5}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/o718aw5z9ul8d97loh2mfw6ngcewky20nx.png)
Why?
To solve the problem, we need to remember the following roots properties:
![a^{(m)/(n) }=\sqrt[n]{a^(m) }](https://img.qammunity.org/2020/formulas/mathematics/middle-school/d9oj7z2ygo35mysyzcbycn7jznlfayq3vk.png)
![a\sqrt[n]{b} =\sqrt[n]{a^(n)*b} \\\\\sqrt[n]{ab}=\sqrt[n]{a}*\sqrt[n]{b}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5r4etyv57ar40jbq4f76hgsqw50sxozw2t.png)
So, we are given the expression:
![(8.320)^{(1)/(3) }](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3ur2h5jzqzuc95cfzc5zx58ux19a6nm45i.png)
Then, writing its equivalent expression, we have:
![\sqrt[3]{8.320}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/j9fi85tlbsvmf8uybux3i3htrtp5w9w4jg.png)
Now, simplyfing, we have:
![\sqrt[3]{8.320}=\sqrt[3]{2560}=\sqrt[3]{512*5}\\\\\sqrt[3]{8.320}=\sqrt[3]{512*5}=\sqrt[3]{8^(3) .5}\\\\\sqrt[3]{8.320}=\sqrt[3]{8^(3) .5}=\sqrt[3]{8}*\sqrt[3]{5} \\\\\sqrt[3]{8.320}=\sqrt[3]{8}*\sqrt[3]{5}=8*\sqrt[3]{5}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7em8kzlpc3i5j4yov27uaipi10purslku7.png)
Hence, we have that the correct option is:
D.
![8\sqrt[3]{5}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/o718aw5z9ul8d97loh2mfw6ngcewky20nx.png)
Have a nice day!