Answer:
option c is correct.
Explanation:
![7\left(\sqrt[3]{2x}\right)-3\left(\sqrt[3]{16x}\right)-3\left(\sqrt[3]{8x}\right)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/bwhx8695dq5vcozihd1uqwvsnoqbj027fq.png)
WE need to simplify this equation.
Solve the parenthesis of each term.
![=7\left\sqrt[3]{2x}\right-3\left\sqrt[3]{16x}\right-3\left\sqrt[3]{8x}\right](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ql2a6ym4b89u9fcdpu75r0dnjpd8zjv1rn.png)
Now, We will find factors of the terms inside the square root
factors of 2: 2
factors of 16 : 2x2x2x2
factors of 8: 2x2x2
Putting these values in our equation:
![=7\left(\sqrt[3]{2x}\right)-3\left(\sqrt[3]{2X2X2X2 x}\right)-3\left(\sqrt[3]{2X2X2 x}\right)\\=7\left(\sqrt[3]{2x}\right)-3\left(\sqrt[3]{2X2X2} \sqrt[3] {2 x}\right)-3\left(\sqrt[3]{2X2X2} \sqrt[3]{x}\right)\\=7\left(\sqrt[3]{2x}\right)-3\left(\sqrt[3]{2^3} \sqrt[3] {2 x}\right)-3\left(\sqrt[3]{2^3} \sqrt[3]{x}\right)\\=7\left(\sqrt[3]{2x}\right)-3*2\left(\sqrt[3] {2 x}\right)-3*2\left(\sqrt[3]{x}\right)\\=7\left(\sqrt[3]{2}\sqrt[3]{x}\right)-6\left(\sqrt[3] {2}\sqrt[3]{x})-6\left(\sqrt[3]{x}\right)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/p7o057nlin7e7act28no7kel6wuqd34djv.png)
Adding like terms we get:
![=7\left(\sqrt[3]{2}\sqrt[3]{x}\right)-6\left(\sqrt[3] {2}\sqrt[3]{x})-6\left(\sqrt[3]{x}\right\\=(\sqrt[3] {2}\sqrt[3]{x})-6\left(\sqrt[3]{x}\right)\\](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xybpltv1yri3oyro6nyhr0he2ir289lwnu.png)
![(\sqrt[3] {2}\sqrt[3]{x})-6\left(\sqrt[3]{x}\right)\\can\,\,be \,\, written\,\, as\,\,\\(\sqrt[3] {2x})-6\left(\sqrt[3]{x}\right)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6ox00rv0rh0fhkho5tar4w62orbrld1n2b.png)
So, option c is correct