30.4k views
3 votes
(ASAP PICTURE ADDED) What is the simplified form of the following expression?

(ASAP PICTURE ADDED) What is the simplified form of the following expression?-example-1
User Prabhuraj
by
7.9k points

2 Answers

4 votes

What that person said so basically C

User Pravin W
by
7.7k points
7 votes

Answer:

option c is correct.

Explanation:


7\left(\sqrt[3]{2x}\right)-3\left(\sqrt[3]{16x}\right)-3\left(\sqrt[3]{8x}\right)

WE need to simplify this equation.

Solve the parenthesis of each term.


=7\left\sqrt[3]{2x}\right-3\left\sqrt[3]{16x}\right-3\left\sqrt[3]{8x}\right

Now, We will find factors of the terms inside the square root

factors of 2: 2

factors of 16 : 2x2x2x2

factors of 8: 2x2x2

Putting these values in our equation:
=7\left(\sqrt[3]{2x}\right)-3\left(\sqrt[3]{2X2X2X2 x}\right)-3\left(\sqrt[3]{2X2X2 x}\right)\\=7\left(\sqrt[3]{2x}\right)-3\left(\sqrt[3]{2X2X2} \sqrt[3] {2 x}\right)-3\left(\sqrt[3]{2X2X2} \sqrt[3]{x}\right)\\=7\left(\sqrt[3]{2x}\right)-3\left(\sqrt[3]{2^3} \sqrt[3] {2 x}\right)-3\left(\sqrt[3]{2^3} \sqrt[3]{x}\right)\\=7\left(\sqrt[3]{2x}\right)-3*2\left(\sqrt[3] {2 x}\right)-3*2\left(\sqrt[3]{x}\right)\\=7\left(\sqrt[3]{2}\sqrt[3]{x}\right)-6\left(\sqrt[3] {2}\sqrt[3]{x})-6\left(\sqrt[3]{x}\right)

Adding like terms we get:


=7\left(\sqrt[3]{2}\sqrt[3]{x}\right)-6\left(\sqrt[3] {2}\sqrt[3]{x})-6\left(\sqrt[3]{x}\right\\=(\sqrt[3] {2}\sqrt[3]{x})-6\left(\sqrt[3]{x}\right)\\


(\sqrt[3] {2}\sqrt[3]{x})-6\left(\sqrt[3]{x}\right)\\can\,\,be \,\, written\,\, as\,\,\\(\sqrt[3] {2x})-6\left(\sqrt[3]{x}\right)

So, option c is correct

User Brian Liang
by
8.3k points