22,146 views
21 votes
21 votes
Need this soon please -

Select the correct answer.
What is the inverse of function
f(x)=√x + 7

Need this soon please - Select the correct answer. What is the inverse of function-example-1
User Elad Gelman
by
2.5k points

2 Answers

12 votes
12 votes


\qquad \qquad \bf \huge\star \: \: \large{ \underline{Answer} } \huge \: \: \star

  • Option A is correct


\textsf{ \underline{\underline{Steps to solve the problem} }:}

Find inverse of given function :


\qquad❖ \: \sf \:y = √(x) + 7


\qquad❖ \: \sf \: √(x) = y - 7


\qquad❖ \: \sf \:x = (y - 7) {}^(2)

Next, replace x with f-¹(x) and y with x ~


\qquad❖ \: \sf \:f {}^( - 1) (x) = (x - 7) {}^(2)

we got our inverse function.

Condition : x should be greater or equal to 7

because we will get same value of y for different x if we also include values less than 7.


\qquad \large \sf {Conclusion} :

  • Correct option is A
18 votes
18 votes


\huge\mathbb{ \underline{SOLUTION :}}

Given:


\longrightarrow\bold{f(x)= √(7)}

To solve for the inverse of a function we begin by re-writing the function as an equation in terms of y.


\bold{Becomes,}

Next step we switch sides for x and y variables and then solve for the y variable as shown below,


\longrightarrow\sf{y= √(x)+7}


\bold{Then,}


\longrightarrow\sf{x= √(y)+7}


\small\bold{Solve \: for \: y \: and \: subtract \: 7 \: from \: the \: both \: }
\bold{sides,}


\longrightarrow\sf{x-7= √(y)}


\small\bold{Square \: both \: sides }


\sf{(x-7)^2=(√(y))^2}


\sf{(x-7)^2=y}

We now re-write in function notation. Take note however that this is the inverse:


\bold{Where \: y}
\sf{=(x-7)^2 }


\longrightarrow\sf{y= (x-7)^2 }


\huge\mathbb{ \underline{ANSWER:}}


\large\boxed{\sf A. \: \: f^(-1)(x)= (x − 7)^2 , \: for \: \underline > 7 }

Need this soon please - Select the correct answer. What is the inverse of function-example-1
User Zach Waugh
by
2.6k points