Answer:
Part 1) Area of rectangle
![3,600\ ft^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/lpse63gv2ovj3vapnja3lvep0fzqys2b9o.png)
Part 2) Area of semicircle
![1,413\ ft^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/9ylf80b7hkwk53vdrh89a9s3ywe457x8bn.png)
Par 3) Total area of grass
![2,187\ ft^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/9f3040q656dckpe99cd8cvaot4c1o5vu9e.png)
Explanation:
we know that
The total area of grass is equal to the area of rectangle minus the area of semicircle
step 1
Find the area of rectangle
The area of rectangle is equal to
![A=45*80=3,600\ ft^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/w9ggqrco4mv4f0tjq1xs7wjnqpa8zk48ky.png)
step 2
Find the area of semicircle
The area of semicircle is equal to
![A=(1)/(2)\pi r^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/kc0drwcee0x7tzxjzifzwy13kvhbtdxe0k.png)
we have
-----> the radius is half the diameter
substitute
![A=(1)/(2)(3.14)(30)^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/usjlboz5hpsb1wpa8blyc5xvx7gl3o5ey8.png)
![A=1,413\ ft^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/inqjguh91o8jier2dwbpb8qrxht34zlh5s.png)
step 3
Find the total area of grass
![3,600\ ft^(2)-1,413\ ft^(2)=2,187\ ft^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/yph588bah1f1x56eiijv99gzkszjh7qxpq.png)