Answer:
12.81.
Step-by-step explanation:
- Molarity (M) is defined as the no. of moles of solute dissolved in a 1.0 liter of the solution.
M = (no. of moles of solute)/(Volume of the solution (L))
M = (mass/molar mass) NaCl / (Volume of the solution (L))
mass of Ba(OH)₂ = 274 mg = 0.274 g, molar mass of Ba(OH)₂ = 171.34 g/mol, Volume of water = 50.0 mL = 0.05 L.
M = (mass/molar mass) Ba(OH)₂ / (Volume of the solution (L)) = (0.274 g / 171.34 g/mol) / (0.05 L) = 0.03 M.
- Ba(OH)₂ is dissociated according to:
Ba(OH)₂ → Ba²⁺ + 2OH⁻,
Every 1.0 mol of Ba(OH)₂ gives 2.0 moles of OH⁻.
∴ [OH⁻] = 2(0.032 M) = 0.064 M.
∵ pOH = -log[OH⁻]
∴ pOH = -log(0.064) = 1.194.
∵ pH + pOH = 14.
∴ pH = 14 - pOH = 14 - 1.194 = 12.81.