Answer:
She applied the exponent -2 to 4(-2) instead of applying the exponent to just -2
Explanation:
we have the expression
![(4m^(-3)n^(-2))/(m^(-1) n)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gf9sl89bfbyt7oj1f4llvytngf9zzc4eh4.png)
Simplify
![(4m^(-3)n^(-2))/(m^(-1) n)=4m^((-3+1))n^((-2-1))= 4m^((-2))n^((-3))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/nskj4rchrwxjk3ub0fx2bweas5bg7omyxl.png)
Substitute the values of m and n in the expression
For
![m=-2, n=4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dfpeoc9r1vr3i2tc5urpnzyb5iz2do9m17.png)
![4(-2)^((-2))(4)^((-3))=4((1)/(4))* ((1)/(64))=(1)/(64)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dbu2vojgid2qj9zd2lj773tn7vy3is1yyv.png)
She applied the exponent -2 to 4(-2) instead of applying the exponent to just -2