Answer:
See explanation
Explanation:
1. R is the set of all integers with absolute value less than 10, thus
![R=\{a\in \mathbb{Z}\ :\ |a|<10 \}=\\ \\=\{-9,\ -8,\ -7,\ -6,\ -5,\ -4,\ -3,\ -2,\ -1,\ 0,\ 1,\ 2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 8,\ 9\}](https://img.qammunity.org/2020/formulas/mathematics/college/hrs6mhanopzj90s029dyu12zy5hh5wjvhs.png)
2. A is its subset containing all natural numbers less than 10, thus
![A\subset R\\ \\A=\{b\in \mathbb{N}\ :\ b<10\}=\{1,\ 2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 8,\ 9\}](https://img.qammunity.org/2020/formulas/mathematics/college/f8wcdyhuzt0r04umvblw9vbtkobsfkd08m.png)
3. B is the set of all integer solutions of inequality 2x+5<9 that are less than 10 by absolute value (and therefore, it is also a subset of R). First, solve the inequality:
![2x+5<9\\ \\2x<9-5\\ \\2x<4\\ \\x<2](https://img.qammunity.org/2020/formulas/mathematics/college/rb0dmk5gb3ubb33414xjdlmtd3rmjl3hfx.png)
Thus,
![B\subset R\\ \\B=\{c\in \mathbb{Z}\ :\ 2c+5<9,\ |c|<10\}=\{c\in \mathbb{Z}\ :\ c<2,\ |c|<10\}=\\ \\=\{-9,\ -8,\ -7,\ -6,\ -5,\ -4,\ -3,\ -2,\ -1,\ 0,\ 1\}](https://img.qammunity.org/2020/formulas/mathematics/college/sq2w0ida54a39567ph9aofpjnkrt5w89vk.png)
See the diagram in attached diagram.
Note that
![A\cup B=R\\ \\A\cap B=\{1\}.](https://img.qammunity.org/2020/formulas/mathematics/college/hy4hxh4xwqx9437vtuikeyi93mqyil00k4.png)