Answer:
The area of a sector GHJ is
![36.3\ cm^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/cz1dgbhhhwqjbb2nduw5d5ag5fcq8k2rzi.png)
Explanation:
step 1
we know that
The area of a circle is equal to
![A=\pi r^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2z11w6ajg8k9itft7shcdqinea4lmf008k.png)
we have
![r=8\ cm](https://img.qammunity.org/2020/formulas/mathematics/high-school/uodlf9krugrfpmrkhj745dl7lq65zzikrt.png)
substitute
![A=\pi (8)^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/k8rlwe5wj1awsgro4ecde5oxs2cge1gmef.png)
![A=64\pi\ cm^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/afqjux4wbdjlhpfn7tcuju4t6nry2a7nop.png)
step 2
Remember that the area of a complete circle subtends a central angle of 360 degrees
so
by proportion find the area of a sector by a central angle of 65 degrees
![(64\pi)/(360)=(x)/(65)\\ \\x=64\pi (65)/360](https://img.qammunity.org/2020/formulas/mathematics/high-school/w9a598bz11wtj0ezmamafgd2q7yy69asul.png)
Use
![\pi =3.14](https://img.qammunity.org/2020/formulas/mathematics/high-school/595myhvi9x0vjp0b1ku7bsoelmk1x8jihg.png)
![x=64(3.14)(65)/360=36.3\ cm^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/b0rmrgs0qzpvehwocn65modftdwkzww0q4.png)